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Comments on the Martingale Convergence Theorem

S. D. Chatterji¥*

Let (2,B,P) be a probability space and let X be a Banach
Space. A sequence of X-valued Bochner-integrable random vari-
ables f, on @ will be sald to form a martingale with respect
to the subalgebras An,n=l,2,...,Aﬁ::An+1 (in short {fn’An}

is a martingale) if
An
= 1
A E fn+l f.n nz3,
where E © is the conditional expectation operator with respect

to the o-algebra An' It is known that these operators are well-
defined for arbitrary Banach-space-valued integrable functions.

o

In the following it will be assumed that the algebra A= nzl AL
generates the o-algebra B. The general case can be handled via.
standard reduction to this case.

My main concern will be proving almost everywhere (a.e.)
convergence theorems for martingales. For the sake of brevity,

I shall 1limit myself in this talk to considering only the

following statements:
(S-) If £ =EAnf then lim f_ = f a.e. (strong limit in X);
1 n Naw 1

(S5)  If {fn,An} is a martingale and the f,'s are uniformly

integrable (i.e. lim [ || £ Il « I(]| fyll> N} aP = 0

>

uniformly in n > 1) then 3J f_ such that lim fy=f, a-e.
— e
(S3) If {fn,An} is a martingale with ggﬁ EC(I] £, < =

then 4 f_ such that rll:Lm fp=f, a-.e.
00
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In section 2 I shall prove that (87) is always true. In
thls generality the result is proved by other methods in
Chatterjl (2b) and also in A.I. and C.I. Tulcea (6). The present
proof, parallelling the proof in the scalar-valued case as in
Billingsley (1), 1s as simple (possibly, some would wish to say,
trivial) as one could wish for.

In section 3 I shall prove the main theorem of this paper,
viz., that 1f X satisfies the following (RN) condition (RN for
Radon-Nikodym) then (83) (and hence trivially (S2)) is valid for
all martingales. The condition referred to is:

(RN): Every oc-additive X-valued set function u on B of
bounded variation with the property that V., the variation of u,
is absolutely continuous with respect to P (Vu<<P) can be
represented as the indefinite integral of an X-valued Bochner-
integrable function.

The non-negative measure Vu is defined as follows:
n

Vu(A) = sup () Ilw(Ar) [casag=e, AgeB, ] A1=A, n 2 1.

The implication (RN)%}(S3) (more precisely X has RN) property
with respect to B and P implies (S3)) is more general than the
statements obtainable from (6). It also follows that (S3) is
valid for reflexive X or separable dual spaces X, statements
explicitly made in (6). For reflexive X, (82) (weaker than
(83)) was proved by different methods in (2a,b) and by Scalora (5).
That some condition on X is necessary for the validity of (S»)
or (83) is demonstrated by the counterexample in (2a). Here a
martingale f,, is constructed which takes values in Ll(O,l) and

which does not converge in any sense, weak or strong, anywhere,




although among other things, ||f,|| = 1 for all n > 1.

nl

In section 4 it is shown that the (RN) condition 1s also
necessary 1f B 1s separable (generated by a denumerable class
of subsets). More precisely, in this case (82), (S3) and (RN)
are equivalent conditions.

Section 2: The main probabilistic tool is the following lemma:

Lemma 1l: For any martingale {fn,An}, if AeAn and € > 0 then
0

1

P{A: sup || £, ||>e} < =
k>R, ! Tk — € PJ.

>h, [sup [y ey 1BPI

The lemma 1s known and an eaSy consequence of the fact that

| £,1l is a submartingale.

A
Theorem 1 (Sl) : For any space X, 1im E ' £ = f a.e. (P).

N>o
Sketch of proof: If f 1s measurable A= nzl Ap then (Sl) is
trivial since EAn f = f for sufficiently large n.
For a general fy_3f€ measurable in A such that
EC||f - £ || ) < e
The following obvious inequality

A A A Ak
|E "r - g'm £ < |E" £ - E " £ell +2 pup E || £

coupled with lemma 1 leads us to (Sl) quite smoothly.
Section 3: Given a martingale {f ,A }, define the set-

functions on An as follows:

W, (A) = IAfn ap.

The martingale property 1s equivalent to the property that

u_ ., is an extension of u to A ;- Hence for any AeA = nzl An

n+] n
lim %§A)=U(A) exists. The set-function uy on A is an X-valued

finitely additive set-function. The set-function is of bounded



variation iff Sup /|| 4]l dP < =. The main difficulty in proving
martingale convgfgence theorems is that uw may not be o-additive.
The following lemma gives a way out.
Lemma 2: Let P be a probability measure on an algebra A of
subsets of a space @ and p a finitely additive X-valued set
function of bounded variation on A. Then
u=n+gag

where n,o are both of bounded variation and n is a finitely
additive set-function such that V_ (the variation of n) is
singular with respect to P (i.e. given ¢, 6 > 0,3 A ¢ A, P(A)<c
Vi (A') < 8) and o is a c-additive set-function such that Vd
is absolutely continuous with respect to P (i.e. glven ¢>0
=3 §>0, P(A)<6#VG(A)< €),

The main idea behind the proof of the lemma will be sketched.
One transfers P and u to the space (S,Zl) where S is a totally
disconnected compact Hausdorff space and Zl is the algebra of
clopen sets in S, Zl being isomorphic to A. It turns out that
P and u are o-additive on 21 and hence can be extended to the
c-algebra 22 generated by Zl. (These are standard methods in
this sort of work. See e.g.(3),pp. 312-13). On these extended
measures on 22 one applies the Lebesgue decomposition theorem as
proved by Rickart (4) and one retraces the way back through 21
to A to obtain the decomposition indicated in the lemma.

With the help of lemma 2, I shall now prove the main theorem
of this talk.
Theorem 2: If X satisfies the (RN) property with respect to P

on B then any martingale {r_ , A } with sup /£, Il aP converges;



i.e. Af_ such that lim f, = f_a.e. (P).

I-—>o
Sketch of the Proof: Let u be as before and n, o as in lemma 2,
¥ restricted to An is an integral. o, being absolutely continuous

with respect to P, is also an integral since X has the (RN)

property.
Let o(A) = I h dP, A ¢ A,
A
and o(A) = ¢, (4) = I hy, dP,A e A,

A A
n
Clearly h, =E h.

Hence n restricted to An is also an integral, \.e.
n(A) = ny(A) = f g, 4P, A e A

A

In other words, £, =g, ¥ oy,

where gn’hn are also martingales with respect to An'
Moreover hn is E " and hence theorem 1 ensures the convergence

of hp to a 1limit.

I shall now show that limg, = 0 a.e. (P).

Given 1 > e, § > 0, find A e A (and hence A ¢ A, for some no)
o
such that P(A') + V, (A) < Q%.

Now

= 1. .
P{gggolagn||> e} = P{A': gggon gall > €} + P{A: sup leg Il > €}

2o
8e + 1 su I| ap (by lemma 1)
< 2 e nz-gOIA H gn
Se 1 8e 4 § .
< = + = Vn(A)< 5 5 < &

This is clearly enough to show that 1lim g, = 0 a.e. (P).
Section 4: In this section, the main thing is the following

lemma for real-valued submartingales:

Lemma 3: If {gn’ An} is a positive submartingale with ggg E (gn) < \



such that w(A) = lim I gy AP, A e A= ] A
n-o n=1

is a o-additive P-continuous set-function ; then the g,'s are
uniformly integrable.
Sketch of Proof: Ir g, 2 0 is a martingale then it 1is easy.
In general Jh, a martingale such that 0 < g, < h, and
such that {hn} induces the same u. Hence the lemma.
Theorem 3: If B is separable then (S2¥%>(RN). Hence in this case
(8,)X(S 5 XH(RN)
Sketch of Proof: Let B be generated by Al’AZ"" and An equal to the

O-algebra generated by A A Given a set-function u on B

LTI
satisfying the conditions in (RN), the martingale {fn, An}
induced by u 1is such that || f,|| satisfies the conditions of
lemma 3. Hence (82) implies the convergence of f, to f,. From
here on it is trivial to show that ¥ is the indefinite integral
of f_.

Note: In the real-valued case the general martingale convergence
theorem S3 can be deduced rapidly from S1 by the following
sequence of arguments:

(I) (Sl)#?(s2) because f, uniformly integrable implies
that 'BnK such that %Hfaf, weakly 1n 11 for some f.
Hence EAnfn;-——T;jZ EAnf weakly. But EAnfnk = for
large 1 . Hence EAnf = f , etec.

(II) every uniformly integrable submartingale converges:
this follows from (I) via the Doob-decomposition for sub-
martingales.

_f
(I1I) Every positive martingale f, converges since e™ N 1is

a uniformly bounded semimartingale.



(IV) An arbitrary martingale fn with sup E f; < ® converges

because it 1s the difference of two positive martingales and

(I11).

From here the same theorem for submartingales can also be easily

obtained.
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